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ABSTRACT 
 
 
 

The J-52 engine used in the EA-6B Prowler has been found to have a faulty 

design which has led to in-flight engine failures due to the degradation of the 4.5 roller 

bearing.  Because of cost constraints, the Navy developed a policy of maintaining rather 

than replacing the faulty engine with a re-designed engine.  With an increase in Prowler 

crashes related to the failure of this bearing, the Navy has begun to re-evaluate this 

policy.  This thesis analyzed the problem using methods in reliability statistics to develop 

policy recommendations for the Navy. 

 One method analyzed the individual times to failure of the bearings and fit the 

data to a known distribution.  Using this distribution, we estimated lower confidence 

bounds for the time which 0.0001% of the bearings are expected to fail, finding it was 

below fifty hours.  Such calculations can be used to form maintenance and replacement 

policies. 

 Another approach analyzed oil samples taken from the J-52 engine.  The oil 

samples contain particles of different metals that compose the 4.5 roller bearing.  Linear 

regression, classification and regression trees, and discriminant analysis were used to 

determine that molybdenum and vanadium levels are good indicators of when a bearing 

is near failure. 
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I.  INTRODUCTION 
 

A.   OVERVIEW 
 The EA-6B Prowler is the only operational electronic attack aircraft flown by the 

U.S. military today.  It has a unique mission that is necessary to the success of most 

military operations.  The Prowler conducts Electronic Attack (EA) missions in support of 

U.S. and coalition air operations that are vital to our national security interests.  It 

possesses a unique mission capability that is in continual high demand to support 

worldwide military operations and is the only aircraft in the U.S. inventory that is 

dedicated to the suppression of enemy air defenses (Pitts, 2002).   

 The Prowler design is about thirty years old and there is a need to replace it with 

an airframe that incorporates today’s advanced technology.  Until a replacement aircraft 

is built, however, the 122 Prowlers in the U.S. inventory are the only EA-capable aircraft 

(Pitts, 2002). 

 

 

 

Figure 1 -  A failed roller bearing. 

 

 

 



 2

 

 In the late 1980’s, it was found that the J-52 engine, the engine used in the 

Prowler, had a faulty design.  Oil flow was insufficient through the engine, and 

consequently there were problems within the engine.  The 4.5 bearing was the part that 

most often failed because of the poor engine design.  After a few in-flight failures of the 

bearing, the Navy ordered a study to be done in order to determine how to correct the 

problem.  The study recommended that the engine be redesigned, but due to cost 

constraints, the Navy decided to replace the bearings whenever the aircraft came in for a 

major inspection.  The cost of a bearing is around two thousand dollars, while a new 

engine design could be well into the millions of dollars (Barber, 2002). 

 

B. BACKGROUND 
In November 2001, two Prowlers crashed within a week, and both crashes were 

most likely caused by the failure of the 4.5 roller bearing (Selinger, 2002).  In the 

Whidbey Island crash, the 4.5 roller bearing in the “right engine failed, touching off a 

chain reaction that ultimately destroyed both engines. Other parts in the turbine section in 

which the bearing was housed ‘were liberated’ and rocketed into the left engine, severing 

fuel and hydraulic lines along the way, an examination of the engines revealed” (Barber, 

2002). 

Immediately following these two crashes, the Navy temporarily grounded its fleet 

of EA-6B Prowlers, but eventually relaxed this restriction, mainly due to the necessity to 

have Electronic Attack aircraft available in Operation Enduring Freedom.  The Navy has 

begun to procure a new generation of Electronic Attack aircraft, but until that time, a new 

replacement policy must be put into place regarding this bearing.   

The Prowler is a twin-engine aircraft, and with approximately 122 Prowlers in 

service for the Navy, there are nearly 250 Pratt and Whitney J-52 engines, not counting 

spare engines, with the 4.5 bearing operational in the fleet today (Pitts, 2002).   
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C.   PROBLEM & PURPOSE 
This thesis looks at two distinct approaches determining the reliability of the 4.5 

bearing.  We want to model the reliable life of the bearing, as well as identify bearings 

that are likely to fail shortly.  Reliability is defined as the probability that a system will 

perform its intended function for a specified period of time.  In this thesis, reliability is of 

more interest than availability, which is the fraction of time that a system is available for 

use (Meeker and Escobar, p.2).  Determining the availability of the aircraft is not as 

important, for this issue, than the reliability.  We want to decrease, if not eliminate, in-

flight failures, so reliability is the natural way to analyze this situation. 

Reliability, in this case, is the probability that the engine bearing will not fail in 

flight.  We are not as concerned with other failures within the engine, but want to look 

specifically at the 4.5 bearing and the effect it has on the reliability of the aircraft.  The 

life scale that we will use is not actual age, but instead hours in which the engine was 

operating, or engine hours. 

 

D. APPROACHES 
The first of the two approaches examined is a standard life data analysis.  A life 

data analysis is done when the collected data is the time to failure of many identical units, 

including suspensions for those units not yet failed.  This data is fit to a distribution 

model to get failure rates, quantiles, and probabilities.  This type of analysis can produce 

estimates of the probability of a failure before a specified time, the hazard function at a 

specified time, and also the proportion of units that will fail in a specified time. 

It is important to use the correct distributional model, or results from the model 

can be greatly different than those that actually take place.  Many times extrapolation is 

necessary to gain useful information from the data.  For example, if a test has run for 400 

hours and what is desired is the proportion failing at 900 hours, using the wrong 

distributional model can very well lead to incorrect conclusions.  Similarly, if we have 

data on 250 engines but want to calculate the reliable life associated with 99.9999% 

reliability, we will extrapolate to a point well before the first observed failure. 
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The times to failure, given in engine operating hours, that are attributed to the 4.5 

bearing were used to fit the data to a distribution.  This allows us to predict probability of 

failure of the bearing over a time interval with a given confidence level.  This in turn 

allows us to evaluate and suggest crude replacement policies. 

Life data analysis gives us some good insight into the overall problem, but there 

are limitations.  Since the data is binary (failed or suspended bearings), this type of 

analysis did not use other available information.  This analysis recommends that the Navy 

should replace each bearing very frequently to maintain a certain reliability level, but this 

interval is impractical.  Therefore, an effective policy based on this type of analysis 

would be a cost-ineffective policy to adopt.   

The other approach used regression techniques from data analysis such as simple 

linear regression, classification and regression trees (CART), and discriminant analysis.  

This process explored the levels of metallic materials found in the filter of the engine.  

The idea was that an increase in certain levels of metals and other elements in the filter 

could be used to predict failure of a bearing.  The elements that make up the bearing that 

are used in this approach are silver, molybdenum, iron, and vanadium. 

The oil filter analysis program is done by “evaluating the residue the filter 

collects” in order to predict the failure of a component, in this case the 4.5 roller bearing.  

When the bearing fails, the particles “that are generated are too large to be picked up in a 

spectroanalysis . . . are picked up in the filter and can be evaluated using filter analysis” 

(Oil Lab, 2002). 

Data on hand that was used for this approach is the percentage of different metals 

found in the oil filter, along with the cumulative mass of each metal within the filter.  The 

collected data also indicates which oil samples come from engines that have failed 

bearings so a classification can be made.   

The results from these approaches are used to create recommendations to the 

Navy to influence policy so that the risk of in-flight bearing failures is reduced.  The 

recommendations identify appropriate approaches discussed in this paper to pursue and 

why.   
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II. LIFE DATA ANALYSIS 
 

A.  APPROACH 
 The first approach used was a standard life data analysis.  A life data analysis is 

done when the collected data is the time to failure of many identical units, including 

suspensions for those units not yet failed.  The idea of this approach is to develop a model 

that fits a distribution to the data, which is described below.  Once we found an 

acceptable distribution for our data, we then estimated the parameters of the distribution 

so that we could generate probability plots and failure-time distribution functions, which 

are described more thoroughly in Appendix A, and also estimate confidence intervals to 

aid in our analysis.   

  

B. DATA 
The data we collected is a mixture of two different types of data.  The first type is 

known as complete data.  Complete data is data that has exact values for the time to 

failure of the bearing.  Right-censored data is data that has not failed by a certain time, 

which is the case for the vast majority of the data that we have.  Both types of data were 

used for the life data analysis (Meeker and Escobar, p.34). 

Listed in Appendix H is the data we used for this analysis.  There are sixty-six 

data entries, with eleven failures and fifty-five suspensions.  This is considered a small 

sample size because of the number of observed failures is low. 

 To analyze this type of data properly, we must understand the methods of analysis 

and parameter estimation appropriate to censored data.  These methods are similar to 

those methods used on complete data, but are modified to fit the needs of censored data.  

For example, in a complete data set, it is easy to calculate the mean of the data.  We 

simply sum the data entries and divide by the number of entries to get this desired mean.  

However, when dealing with censored data, we need to adjust for the interval of 

uncertainty that comes with each data point that is censored.  To take the mean of 

censored data, we must account for the data points that did not fail by the end of the data 
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collection period.  Therefore, the probability of failure, also known as unreliability, needs 

to be adjusted.  These methods are discussed further in Appendices C and D. 

 

C.  ASSUMPTIONS 
We expect the 4.5 bearing of the J-52 engine to have an increasing failure rate.  

As the bearing gets worn down, it should be more susceptible to failure.  There is the 

possibility of infant mortality, in which case the failure rate function would have a 

‘bathtub-shaped’ look.  We consider the data to be well past the time of infant mortality, 

so we can disregard this possibility for the failure rate.   

 We are primarily concerned with the distribution of the life of the bearing during 

early life.  We considered distributions that have strictly increasing failure rates during 

early life, but included distributions, such as the lognormal, that fail the strictly increasing 

failure rate test over the whole domain.  

 

D. DISTRIBUTIONS AND PLOTS 
 We used a commercial software package, Weibull++, to help with the analysis.  

Weibull++ is able to take the data and fit distributions to this data and also estimate the 

parameters of these distributions.  It also has a function that tests the goodness of fit of 

each distribution, and this function then recommends the distributions that are the best fit 

for the data.  The goodness of fit tests are a weighted score of Anderson-Darling, 

Kolmogorov-Smirnov, and Maximum Likelihood tests.   

Properties of common lifetime distributions are given in Appendix B.  For our 

data, the first distribution that Weibull++ recommends to us is the two-parameter 

exponential distribution.  One of the characteristics of the exponential distribution is that 

it is a memory-less distribution, i.e. it has a constant failure rate.  However, one of our 

assumptions was an increasing failure rate of the bearing, at least during the portion of 

time that we explored.  Because of this, we eliminated the exponential distribution from 

consideration. 

 The next best-fit distribution is the three-parameter Weibull distribution.  We took 

a look at the probability plot, seen in Figure 2, and it seemed like a decent fit.  Appendix 
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C describes the idea of probability plotting in greater detail.  Looking at the failure rate 

function in Figure 3, we saw that the PDF is zero before approximately 580 hours.  This 

would make it hard to analyze the data and come up with a one-sided confidence bound 

given a desired reliability level.  Given this, we preferred to look at other distributions 

that fit the data fairly well, yet allowed these desired one-sided confidence bounds. 

 

 

 

 

 

Figure 2 – This is the probability plot using the three-parameter Weibull distribution to fit our data.  
The curved line on the right is the data fit to the model on the original scale.  The straight line is the 
data fit to the model after the translation parameter has been subtracted.  Above the straight line is a 
one-sided upper confidence bound at the 95% level for the failure probability.  The best-fit line is not 
a great fit to the data, which is not uncommon, as MLE estimates for small samples such as this are 
known to be biased.  Suspensions are noted on the horizontal axis. 
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Figure 3 – This is the failure rate using the three-parameter Weibull distribution to fit the data.  The 
failure rate is conditional on the translation parameter, which is fixed.  We can see as a result that 
the function is zero before approximately 580 flight hours.  Also drawn on this plot is the upper 
confidence bound.  Because of this, it is hard to determine a one-sided confidence bound with a given 
reliability level, and thus we want to look at another distribution that would allow us to do so.  We 
also want to at least admit the possibility of early failures, so a translation parameter is not desired. 

 

 

 We then looked at the next recommended distribution, which is the lognormal 

distribution.  The probability plot in Figure 4 looked slightly worse than that from the 

three-parameter Weibull distribution, although the difference was minor.  The failure rate 

function was increasing, at least in the time interval that we explored.  In Figure 5, it can 

be seen that the failure rate increased until approximately 2800 hours, which is well past 
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Figure 4 - This is the probability plot with the lognormal distribution modeling the data.  This looks 
to be a better fit than in Figure 2.  Once again, we also have included the 95% upper confidence 
bound on unreliability. 
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Figure 5 - This is the failure rate of the data when fitted to the lognormal distribution.  Despite being 
a non-monotonic function, it is an increasing function up until a certain point.  Our expected time to 
failure is well before this point, so we can use the lognormal distribution to fit our data. 

 

The last distribution that we explored was the two-parameter Weibull distribution.  

Even though Weibull++ ranks this distribution lower than the lognormal, we wanted to 

take a look at the probability plot of the data fit to this distribution, seen in Figure 6.   We 
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Figure 6 – This is the probability plot modeling the data with the two-parameter Weibull 
distribution.  We again have a 95% one-sided upper confidence bound.  The best-fit line is clearly not 
a good fit. 
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F. PARAMETER ESTIMATES AND CONFIDENCE BOUNDS 
Now that we selected a distribution, we needed to estimate the parameters of this 

distribution.  We let Weibull++ calculate them, using either Rank Regression (RRX) or 

Maximum Likelihood Estimators (MLE).  For more on these two techniques and the 

differences between them, refer to Appendix D.  Since we have censored data with a 

sufficiently large sample size, we used the MLE method to estimate the desired 

parameters.  Using this method, we got the following parameters for our model:    µ = 

7.8072, σ = 0.6647. 

We set a reliability level that is high enough so that the risk of failure is very 

small.  Due to the catastrophic nature of just one failure, we set the reliability level to be 

99.9999%.  Once the probability of failure is greater than 0.0001%, we would 

recommend that the bearing be replaced.  Using the probability plot generated from 

Weibull++, seen in Figure 7, after approximately 100 engine hours, the point estimate of 

the reliability level has dropped to 99.9999%, our given threshold level.   
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Figure 7 – This is the probability plot of the lognormal distribution with the estimated parameters 
using MLE.  This plot shows the expected time of failure for 0.0001% of all aircraft to be 104.3 
hours, with a 95% upper confidence bound (Fisher-Matrix) of 42.8 flight hours.  Once again, the 
circles represent the failures and the triangles represent the suspensions. 
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engines, we could only estimate this value using different probabilistic methods.  Our 

parameter estimates will change slightly from sample to sample, thus changing the 

reliability value that we estimated.  Confidence bounds produce an interval that should 

contain the reliability value for a certain percentage of intervals generated from this 

sampling scheme, in our case, 95%.   

Confidence bounds can be one or two-sided.  Two-sided bounds have both an 

upper and lower bound to the interval, while one-sided bounds have either an upper or 

lower limit, but not both.  We can further break one-sided bounds down into two types.  

We can have either one-sided upper confidence bounds or one-sided lower confidence 

bounds.  One-sided upper confidence bounds have an upper bound on the interval and a 

lower bound being the start time, in most cases zero.  One-sided lower confidence 

bounds, thus, have a lower bound on the interval and an upper bound that goes out to 

infinity.  In our case, we did not care what happened at later time periods, and therefore 

had no utility for an upper confidence bound.  We gained more useful information if we 

chose to use the one-sided lower confidence bound to construct our interval for the 

estimator of the engine hours it takes for 0.0001% of the engines to fail. 

There are two different approaches to constructing confidence bounds that we 

considered for our model.  They were Fisher Matrix (FM) confidence bounds and 

Likelihood Ratio (LR) bounds.  Fisher Matrix bounds use the assumption of 

asymptotically normal MLE estimates of the parameters, and therefore need a sufficiently 

large sample size.  Likelihood Ratio bounds do not depend on asymptotic normality as 

strongly as doe Fisher Matrix bounds, and thus work better than FM when the sample 

sizes are smaller.  We discuss each of these methods in greater detail. 

 To construct confidence bounds using FM, we need to know the mean and the 

variance of the function that we are examining.  Since we are inquiring about the cdf, or 

unreliability function, of the lognormal distribution at 0.0001% unreliability, we need the 

mean and variance of this function in order to use Fisher Matrix bounds. 

The mean can be calculated easily enough using MLE’s and their invariance 

properties, and we have already done so earlier.  Now we need the variance of the 

function.  The variance of a function depends on the variance of each of the parameters 
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estimated in the function, as well as the covariance between them.  Appendix E gives a 

more in-depth look at this idea.   

For our data, the Fisher Matrix method gave us a 95% one-sided lower confidence 

bound of 42.8 engine hours.  Thus, the Fisher Matrix method suggested that a 99.9999% 

reliability threshold with 95% confidence was 42.8 engine hours. 

The Likelihood Ratio bound method is based upon the following equation:  

(1.1) 
,

( ) 22 ln ˆ( ) k

L
L α

θ
θ χ− ≥

 
 
 

, 

where ( )L θ  is the likelihood function with unknown parameter(s)θ , ( )ˆL θ  is the 

likelihood function calculated with our estimated MLE parameters, 2
,kαχ  is the chi-

squared test statistic with probability α and k degrees of freedom. ( )ˆL θ  is calculated 

using the MLE method, and since we know the parameter estimates, the only unknown 

term in the equation is ( )L θ .  We can then solve for this term (Meeker and Escobar, 

p.185).  

 Since we chose the lognormal distribution to model the data, we have two 

parameters that can vary.  Thus, a set of values will satisfy the equation.  Numerical 

methods are then used to find this set.  For our data, using the Likelihood Ratio method to 

calculate our 95% one-sided lower confidence bound, we got a value of 31.1 engine 

hours for the lower confidence bound.  Thus, a 99.9999% reliability threshold with 95% 

confidence was 31.1 engine hours, according to this method. 

A more conservative approach would be to use the method that gets the lower of 

the two confidence bounds, which would be using the Likelihood Ratio bound method.  

Both methods, however, suggest replacing the bearing too frequently for practical 

purposes.   

 

G. RESULTS FROM LIFE DATA ANALYSIS 
The Navy currently employs a policy that replaces the bearings at major 

inspection intervals, which vary but can be more than one thousand engine hours apart, 

which is drastically high compared with the results from our model (Barber, 2002).  The 
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point estimate of the probability of such a failure by one thousand engine hours is 0.088.  

This can be seen in Figure 7, although it is difficult to read from the plot.  Given this, and 

that five of the sixty-six bearings failed before this time, we can see that a better policy 

should be implemented.  Replacing the bearings every thirty or forty hours, though, might 

not be the best policy either.  The cost-effectiveness of this policy would not be very 

high.  If we take a look at the data, the first failure occurred after 646 engine hours.  This 

suggests that the bearings more than likely can be used a lot longer than 31.1 hours by 

accepting slightly more risk.  This is a shortcoming of our 99.9999% reliability 

requirement.  Replacing bearings every thirty or forty hours discards a lot of useful life in 

each bearing without gaining much more reliability.  Considering the high cost of both 

replacing the bearing and maintenance, this does not seem to be a very efficient policy.  

In light of this, we want to come up with a better model to more accurately determine 

when a bearing will fail.   
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III.  OIL FILTER ANALYSIS 

 

A.  TECHNIQUES  
The second approach used techniques from data analysis: simple linear regression 

models, classification and regression trees (CART), and discriminant analysis.  These 

processes used the levels of metallic materials found in the filter of the engine as a 

predictor of failure.  The idea was that an increase in certain levels of metals and other 

elements in the filter could be used to predict failure of a bearing.  The main elements 

that make up the 4.5 bearing are molybdenum (4%), iron (90%), and vanadium(1%); the 

cage that holds the bearing is made of silver.  From our analysis, we determined the 

levels of each of the metals found in the oil filter that are the best indicators of a failed 

bearing. 

 

B. DATA 
As the engine is used, friction between the bearings and the shaft cause particles 

of the metallic bearings to break off from the bearing.  These particles get mixed in with 

the oil in the oil filter.  The data that has been collected is a sample of the debris found in 

the oil filter.  The sample is placed on a patch that is one square centimeter in area and 

the mass of each metal found in this sample is recorded.  The units of the level of each 

metal found in the sample are grams per square centimeter.  The cumulative amount of 

each metal is the data that is used in the analysis. 

 Each time the oil filter is changed, the contents of the filter are analyzed for the 

presence of the aforementioned metallic substances.  The data we shall use is updated 

every time the filter for a specific engine is changed, in order to represent the additional 

amounts of the different metals found in the single oil filter.  We are interested in the 

cumulative build-up of the metals inside the filter because this could represent the overall 

life span of the bearing, and therefore could be the best predictor available as to the 

health of the individual bearing. 

There are twenty-one sample engines from which the data was collected.  The 

levels of silver, molybdenum, iron, and vanadium are recorded for each engine.  Also 
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recorded is the health of each bearing.  The health of the bearing is broken down into a 

integer value between zero and five.  Zero indicates that the bearing was brand new, 

while a five indicated that the bearing had completely failed.  When the bearing begins to 

skid and wear on the rollers, it is said that the bearing stage is one.  A bearing stage of 

two indicates there is noticeable wear on the bearing rollers.  Stage three is classified as 

when the cage of the bearing begins to crack.  When the cage incurs severe wear, the 

bearing stage is four.  We can interpolate between the stages to come up with a 

continuous function for bearing stage.  Figures 8-11 below present the plots of the level 

of each metal versus the bearing stage.  
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Figure 8 – This is the Bearing Stage vs. Vanadium plot.  There seems to be some positive correlation 
between the two.  We found ρ = 0.855. 
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Figure 9 – This is the Bearing Stage vs. Silver plot.  It is not clear if there is any correlation between 
the two.  We found ρ = 0.359. 
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Figure 10 – This is the Bearing Stage vs. Molybdenum plot.  Again, it looks like there is some positive 
correlation between the two.  We found ρ = 0.854. 

 

 

 

 



 20

Iron

Be
ar

in
g 

St
ag

e

0.2 0.4 0.6

1
2

3
4

 

Figure 11 – This is the Bearing Stage vs. Iron plot.  There may be a slight positive correlation 
between the two, but it is not quite clear.  We found ρ = 0.304. 

 

 Figure 8 shows that the level of vanadium and bearing stage are positively 

correlated.  In general, as the level of vanadium found in the oil filter sample rises, so 

does the bearing stage.  This is also true of molybdenum, seen in Figure 10.  Iron and 

silver do not show this trend.  In fact, these two metals do not show any obvious trend 

that would help predict the stage of the bearing.  We can also see in Figures 12 and 13 

that the levels of vanadium and molybdenum in this sample can be classified perfectly, 

meaning that a naïve model by inspection would yield no misclassification of any of the 

bearings. 
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Figure 12 – This is the Vanadium vs. Bearing Stage plot with perfect classification.  If we classify 
bearings with a stage of 2.5 or greater as bearings in need of replacement, then we can say that if the 
level of vanadium found in the oil filter is greater than approximately 0.0055 g/cm2, the bearing 
should be replaced. 
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Figure 13 - This is the Molybdenum vs. Bearing Stage plot with perfect classification.  If we classify 
bearings with a stage of 2.5 or greater as bearings in need of replacement, then we can say that if the 
level of molybdenum found in the oil filter is greater than approximately 0.0041 g/cm2, the bearing 
should be replaced. 
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C. SIMPLE LINEAR REGRESSION MODEL 
First, we created a simple linear regression model to predict the bearing stage 

given the levels of vanadium, iron, molybdenum, and silver found in the oil filter.  The 

regression model equation is of the form  

(1.2) 0 1 1 1 1[ ] ... k kE Y b b x b x− −= + + + , 

 where k is the number of input variables that will be used to predict the response variable 

(Hamilton, p.66).  To perform this linear regression, we assumed that the expected value 

of the response variable given the input variables was linear.  For our data, we had four 

input variables.  Therefore, the model that we constructed was of the form  

(1.3) 0ˆ V V Fe Fe Mo Mo Ag Agy b b x b x b x b x= + + + + , 

where bo is the estimate for the intercept and bk is the estimate for the slope of the k-th 

input variable.   

For each of our data entries, we used the input variables to generate an expected 

response variable.  We then took the difference between this expected value and the 

observed value.  Using all our data entries, we calculated the sum of the squares of this 

difference, which is known as RSS.   

(1.4) ( )
2

1

ˆ
n

i i
i

RSS y y
=

= −∑  

The coefficients that minimized the RSS are the ones we chose for our model (Devore, 

p.498).  We used S-Plus to generate these coefficients for our model.  

 By creating a linear model in S-Plus, we got the coefficients seen in Table 1.  We 

see that the p-values of each individual element are high, suggesting that the removal of 

any one of these elements will not hurt the model.  The R2 of the model is 0.7516. 
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                Value Std. Error   t value  Pr(>|t|)  

(Intercept)     1.0      0.32      3.15      0.0062 

          V   186.36   211.20      0.8824    0.3906 

         Fe    -0.71     1.60     -0.4447    0.6625 

         Mo    19.97    32.13      0.6215    0.5430 

         Ag     0.41     0.67      0.6152    0.5471 

Table 1- Table of coefficients for initial linear model.  If the model is accepted, we assume that the 
errors are normally distributed. 

 

 

We checked the residuals for normality.  Figure 14 shows a plot of the residuals against 

the standard normal quantiles.  The plot does not look too bad, except the lower tail 

seems a bit skewed, so we decided that the residuals did not look to be normally 

distributed. 
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Figure 14 - Residuals of the model plotted against the standard normal quantiles.  The fitted line is 
the line that the residuals should fall on if they are normally distributed. 
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Figure 15 - This is a histogram of the residuals from our simple linear model.  The residuals are not 
quite symmetric, and therefore do not look to be normally distributed. 
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Figure 16 - This is a plot of the fitted values vs. the residuals of our initial model. 
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Figure 15 is a histogram of the residuals, and from here the residuals also do not look to 

be from the normal distribution.  Figure 16 is a plot of the fitted values against the 

residuals.  This plot does not seem to be suggesting that our model is a good fit.  After 

looking at various transformations of the data, there were no candidates whose residuals 

looked a lot better than this model, however.   

 We continued with this model and added two-way interactions into it.  After we 

added the interactions, we ran the stepAIC function in S-Plus.  The stepAIC function 

automates the stepwise addition of terms from our model that significantly decreases the 

residual sum of squares (Venables and Ripley, p.186).  Table 2 shows the coefficients of 

the terms that remained in our model.  The R2 of this model is 0.8598, which is 

significantly higher than other models we looked at. 

 

                Value  Std. Error    t value   Pr(>|t|)  

(Intercept)     0.64      0.59       1.08      0.3019 

          V -1497.62    819.27      -1.83      0.0948 

         Fe     4.97      3.44       1.44      0.1766 

         Mo   248.73    115.33       2.16      0.0540 

         Ag    -4.49      2.52      -1.78      0.1028 

       V:Fe  4126.47   2222.65       1.86      0.0903 

       V:Mo  4396.29   2935.63       1.50      0.1624 

       V:Ag   549.03    377.26       1.46      0.1735 

      Fe:Mo  -803.90    345.49      -2.33      0.0401 

      Fe:Ag     8.34      3.78       2.21      0.0493 

Table 2 – These are the coefficients of linear model with interactions.  Some terms have high p-
values, suggesting that we can remove that term and the model would not be affected much. 

 

In Figure 17, we see the plot of the residuals of our model with interactions 

against the standard normal quantiles.  Figure 18 is the histogram of our model with 

interactions.  These plots show some improvement from the previous model with respect 

to the residuals being normally distributed.  We removed some of the terms with high p-

values individually, and although the R2 value of each of the new models did not drop 
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significantly, the residuals looked less normal than the residuals from this model.  Figure 

19 is the fitted values versus residuals plot.  This plot suggests to us that this model may 

be better than our previous one. 
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Figure 17 – This is a plot of the residuals of the model with two-way interactions against the standard 
normal quantiles.  Residuals that are perfectly normal would all fall on the line, but the residuals 
from our model are close to the line in most cases, therefore we conclude the residuals are normally 
distributed.   
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Figure 18 – This is a histogram of the residuals of the model that includes two-way interactions.  The 
shape of this histogram is somewhat close to that of the normal distribution.  Given the small sample 
size, we shall assume that the residuals are normally distributed.  
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Figure 19 - This is the plot of the fitted values vs. residuals of our model with interactions.  There 
seems to be one extreme outlier, although after looking at the data point, it is not immediately clear 
why this point is so extreme. 
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From these models, we saw an emphasis was placed on the presence of vanadium 

and molybdenum in the oil filter when determining the bearing stage, so we wanted to 

construct a model that simply modeled the bearing stage as a function of the presence of 

these two metals together.  The coefficients of such a model are seen in Table 3.  This 

model has an R2 of 0.7674.   

 

 

                Value Std. Error   t value  Pr(>|t|)  

(Intercept)    1.20     0.34      3.55      0.0025 

          V   71.02   178.10      0.40      0.6950 

         Mo   11.00    24.34      0.45      0.6569 

       V:Mo 2483.82  1972.94      1.26      0.2251 

Table 3 – This is the table of coefficients of the linear model that models bearing stage by simply the 
level of vanadium, molybdenum, and the interaction between the two. 
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Figure 20- Histogram of Residuals of model with only vanadium, molybdenum and the interaction 
between the two. 
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Figure 21 - Residuals of model with vanadium, molybdenum, and the interaction between the two. 
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Figure 22 - This is the fitted values versus residuals plot for our model that included just V, Mo, and 
the interaction between the two.  
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Figures 20-22 show the plots of the residuals, which do not look as normally 

distributed as the residuals from the previous model.  This last model showed that the 

levels of vanadium and molybdenum found together in the oil filter are a good indicator 

of the health of the associated bearing.   

Overall, the best model is probably the second one, although there are many terms 

chosen by stepAIC for inclusion in the model that had high p-values.  However, the plots 

of the residuals look to be closer to the normal distribution than those of any other model, 

and the R2 value of this model is also significantly higher than the other models.  We 

looked at other regression tools to construct some more models in order to validate this 

result as best we can.  Also, Figures 8 and 10 indicate that the response is probably 

piecewise linear, which makes the use of standard regression models problematic. 

 

D. REGRESSION TREE MODEL 
 

Our second approach to analyze our data was to use regression trees.  Regression 

trees use least squares regression to develop a stepwise tree structure.  In regression, there 

is a response variable, y, and independent variable, x.  We use the x-values to construct a 

predictive model.  These models can be used to accurately predict the response variable 

for future x-values.  They also can be used to see the relationships between the x and y 

variables.  Refer to Appendix F for more details on regression trees.  

We analyzed the oil filter data using regression trees.  The data has five ordered 

variables, one being the bearing stage and the other four being the level of the 

corresponding metal found in the filter analysis.  Since we constructed a model that 

predicts the bearing stage based on the levels of the different metals found in the filter, 

our independent variables were the levels of the four metals, and our response variable 

was the bearing stage. 

We used the computer program S-Plus to help with the construction of our 

models.  The tree function in S-Plus was used to create our first regression tree.  We 

declared  the  response  variable  to  be the bearing stage and all the other variables as our 
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inputs.  S-Plus did the calculations of the deviance and constructed a tree that reduced the 

total deviance of the model.  In Figure 23, we see the initial tree that S-Plus built based 

on our data. 

 

|V<0.00544194

Ag<0.250423

Ag<0.163453

1.780 1.560

1.180

4.117

 

Figure 23 – Initial regression tree with the intermediate nodes labeled with the appropriate split and 
the terminal nodes labeled with the appropriate predicted bearing stage.  This model has four 
terminal nodes.  The ‘yes’ branch is to the right and the ‘no’ branch is to the left.  Accordingly, the 
mean bearing stage for an oil sample with V < 0.00544194 and Ag > 0.250423 is 1.180. 

 

 From this tree, we see that the first split was determined by the amount of 

vanadium that is found in the oil filter.  This model said that if the total mass of vanadium 

found in the filter is less than 0.00544194 g/cm2, then we should follow the branch to the 

left of the node, which gets us to another intermediate node based on the level of silver in 

the filter.  If the level of vanadium is greater than 0.00544194 g/cm2, then we branch off 

to the right of the first node, which leads to a terminal node.  The expected bearing stage 
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at the terminal node is 4.117, which is the average of all the bearing stages from the data 

entries that have a vanadium level greater than 0.00544194 g/cm2.   

 There are four terminal nodes in this model, with a calculated deviance of 0.2445.  

We see that this model incorporates only the levels of vanadium and silver when 

determining the predicted bearing stage.  This suggests that the levels of molybdenum 

and iron found in the oil filter have little to no effect on the stage of the bearing or are 

confounded with other predictors.  If we look at the tree, we notice that all of the terminal 

nodes that descend from the split where the vanadium level is less than 0.00544194 g/cm2 

have predicted bearing stage values less than two.  This suggests that the biggest 

indicator of bearing health is the amount of vanadium that is found in the oil filter.   

  We now turn our attention to pruning this model.  Since we split each node until 

splitting made no difference, we have run the risk of over-fitting our model to the data.  

To counteract this, we must prune the tree backwards to get a good balance of descriptive 

and predictive power.  This technique creates a nested sequence of sub-trees, from which 

the best-sized tree is chosen (Venables and Ripley, p.327). 

 A tree is determined to be of best size when the deviation is the smallest.  In S-

Plus, we ran a cross-validation function to determine what size tree gives us the smallest 

deviance.  We used cross-validation to suggest to us the best size of our tree without 

over-fitting the model to the data.  Looking at the deviances of the different sizes, we 

chose the best size to be two.  Figure 24 shows us a picture of the deviance compared to 

the size of the tree. 
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Figure 24 – There is a large drop off in deviance when the size of the model moves from one to two.  
For sizes larger than two, the deviance does not significantly drop, leading to the best size chosen to 
be two. 

  

 From this picture, we see that the deviance does not decrease noticeably for size 

values of greater than two.  Since we wanted the simplest model possible, we chose the 

smallest size among all the deviances that are close, which gives us the best size of two 

for our model.   

 Then we wanted to prune our tree appropriately, so we took this recommendation 

and ran the prune function, which pruned our model down to a tree with the desired size.  

Figure 25 shows us our new model, which is a tree of size two.   
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|V<0.00544194
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Figure 25 – The pruned regression tree that is of size two.  This tree indicates that the only split that 
really matters is the split on the vanadium levels.   

 

 This tree splits the original node with the same variable as our previous tree.  This 

is because all pruning did was remove splits in nodes that are too far down the tree.  This 

new model agrees with what was stated earlier, that the best model simply looks at the 

level of vanadium in the oil filter.  When this level goes above a certain threshold, the 

predicted stage of the bearing then changes.   

 The regression tree that we have constructed as our model to predict the stage of 

the bearing by the level of certain metals found in the oil filter is a very simple one.  It 

suggests that vanadium may be used as a lone indicator of the health of the bearing, as 

suggested in Figure 12.  This model almost seems a bit too simple, so we will take a third 

approach to analyzing this oil filter data to see if we can gain similar results.   
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E. CLASSIFICATION TREE MODELS 
When analyzing the oil filter data, we did not care as much about what the exact 

bearing stage was, but instead all we really wanted to know was whether or not the 

bearing had failed.  To do so, we needed to modify the data that we used when we 

constructed our regression tree model.  Instead of an ordered response variable for our 

bearing stage, we classified the bearing stage into two distinct types: failed bearings and 

non-failed bearings.   

We used another tree-based model to analyze our data: the classification tree.  The 

idea is to select splits in each node so that the subsets created by the split are more pure 

than the original node.  Classification trees are similar to regression trees, except the 

response variable is categorical instead of a continuous numerical value.  Appendix G has 

more on this topic. 

Again, we used S-Plus to construct our classification trees.  We also used many of 

the same functions in S-Plus used to build regression trees.  Before we began building our 

model, though, we first converted the data into a data type that we could use.  We decided 

on a way to label whether a bearing has failed or not.  We chose a cutoff value such that 

all bearings with bearing stage values higher than this cutoff were said to be failed 

bearings.  Based on the levels of perfect classification observed in Figures 12 and 13, we 

chose the cutoff of the bearing stage to be 2.5, which is after the stage when there is 

noticeable wear on the bearing and before the cage has cracked.  All bearings in our data 

that have bearing stages that are less than 2.5 were said to have not ‘failed’, while those 

with bearing stage values of 2.5 or greater were considered to have failed.  With the 

proper data type, we built our classification model. 



 36

|V<0.00544194

FALSE TRUE

 

Figure 26 - Classification tree with the intermediate nodes labeled with the appropriate split and the 
terminal nodes labeled with the predicted response.  This model has three terminal nodes. 

 

 Figure 26 shows the classification tree that was generated in S-Plus from our data 

set.  At the terminal nodes, the response tells whether the bearing is projected to be a 

failed one.  True responses indicate that the bearing has failed, while false indicates 

otherwise.  This model says that the level of vanadium is plays a large part in telling 

whether a bearing has failed or not.  It suggests that the level of vanadium found in the oil 

filter of a failed bearing is at least 0.00544194 g/cm2, which is the same cutoff level used 

in our regression tree model.   

 With our classification tree, we had a misclassification rate of zero.  This follows 

from Figure 12.  The model we constructed had perfect classification of our sample, 

suggesting that we had a very good model.  We did not have a need to prune the model 

any further, as we were already guaranteed to have minimal misclassification (zero) with 

a small model size (two terminal nodes). 

The results from both the regression and classification tree models are very 

similar, mainly because the processes used to construct them are similar.  It is more 

intuitive to use the classification tree model because this model gives us a clearer answer.  

With the regression tree model, the response variable was the expected bearing stage, but 

with the classification model, the output was simply whether the bearing is projected to 

have failed or not.  This is the question we are trying to answer, so the classification tree 
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model makes more sense for us to use.  Regardless, though, both models give strikingly 

similar results.   

 

F. DISCRIMINANT ANALYSIS 
The last regression technique we explored was discriminant analysis.  

Discriminant analysis is another classification technique that tries to find a set of 

coefficients that defines a function that separates groups of variables maximally.  This 

function is known as a Linear Classification Function (LCF).  This function can be 

written   1 1 ... k kLCF wV w V= + + , where w is the discriminant coefficient, V is the set of 

variables, and k is the number of variables.   

Discriminant analysis is used in order to find common groupings of variables.  A 

threshold, which is used to classify objects into groups, is determined.  If the LCF is 

greater than or equal to the threshold level, the object is classified into one group.  If the 

LCF is less than the threshold, then it is in the other group (Groth, p.34-35).  

  Once again, we used S-Plus to aid with constructing the model.  After creating a 

model through the lda function, we looked at the coefficients of the linear discriminant 

generated for our model.  These coefficients are those of the LCF.  We have our w’s for 

our function.  The input variables, Vk, are used to generate the response variable to 

determine which group each data entry is classified into.  We also obtain the threshold 

value from S-Plus.    

We shall omit the precise mathematics behind linear discriminant analysis, but for 

a more complete overview of the topic, consult Chapter 11 in Modern Applied Statistics 

with S-Plus by W.N. Venables and B.D. Ripley. 

 The data we used for this approach was the same used in the classification tree 

approach.  We split the stage of the bearings into two groups.  A bearing stage of 2.5 or 

greater suggested that the bearing was in need of replacement.  Those bearings less than 

2.5 were said to not need replacement.  The linear discriminant coefficients for our model 

are shown in Table 4.  
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            LD1  

 V  194.6005467 

Fe    0.7540444 

Mo   50.0668160 

Ag   -0.1222041 

Table 4 - Linear discriminant coefficients 

 

Therefore, the LCF is the following:  194.60 0.75 50.07 0.12V Fe Mo AgLCF V V V V= + + − . 
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Figure 27 - These histograms show what LCF values each data entry has.  The threshold value has 
been normalized to zero to make it easy to see which side of the threshold each data entry is on.  This 
threshold once again gives us perfect classification. 

 

In Figure 27, we can see the LCF values for each data entry.  Each value has been 

adjusted so that the threshold value is zero.  This makes it easy to see which side of the 

threshold a data entry is predicted to be on.  Once again, we have perfect classification of 

our sample from the model.  We can clearly see that the coefficients for vanadium and 

molybdenum are the dominant terms in the equation, which leads us to conclude that the 



 39

amounts of vanadium and molybdenum found in the oil filter are the key to determining 

whether or not the bearing should be replaced.  This result is consistent with the other 

models that we have constructed. 
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IV.  CONCLUSIONS AND RECOMMENDATIONS 

 
A. CONCLUSIONS 

The current Navy policy does not give an acceptable reliability level for the 

bearing (currently 91.2%, according to our model), so we used life data analysis to find a 

replacement policy that ensures that 99.9999% of the bearings will not fail with 95% 

confidence.  This analysis gave us a lower confidence bound of less than fifty hours, 

which is not a practical policy either.  This policy would cost too much and not be very 

efficient due to much useful life of each bearing being discarded.  Therefore, a policy 

should be based on some other type of analysis.  The analysis that we have used is the oil 

filter analysis.  Every model that we constructed greatly depended on the level of 

vanadium found in the oil filter sample.  Some models also suggested that when 

molybdenum is present with vanadium, this dependence was even greater.  We have 

therefore determined from this analysis that the level of vanadium found in the oil filter is 

a key indicator of bearing failure, with molybdenum being a secondary factor when 

vanadium is already present.  The regression models seem to be too crude due to the lack 

of a larger sample size and non-linear behavior seen in Figures 8-11, so we do not 

suggest exact levels to use to monitor the health of the bearings.  Nonetheless, these 

models have been helpful in identifying the indicators of a failed bearing.   

 

B. RECOMMENDATIONS  
 Recommendations for policy changes are to use the results from the life data 

analysis to obtain an acceptable interval of time in which to gather oil filter samples.  To 

implement an effective policy, we round our result of 42.8 engine hours down to forty 

engines hours as our time between samples.  When the cumulative levels of vanadium get 

too large in the oil filter, we suggest replacing the degraded bearing.  The cutoff that our 

model suggests is 0.00544194 g/cm2.  Despite this being a result of a small sample size, 

we recommend a cutoff at this point until a larger sample size can be collected.  We also 
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recommend that data on the 4.5 bearing continue to be collected and the health of the 

bearings monitored. 

 

C. FUTURE RESEARCH 
 

When future data is collected, it would be helpful to record the age of the bearing 

as well as the levels of the metals found via the oil filter analysis.  With this extra piece of 

data, we could combine the two approaches that we have done to come up with a more 

precise model that could be used to determine failed bearings based upon both the levels 

of the metals found in the oil filter and the age of the bearing.  This would allow us to 

estimate the margin of safety in the oil filter approach. 
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APPENDIX A.  FAILURE-TIME DISTRIBUTION FUNCTIONS 

This appendix gives an overview of the failure-time distribution functions used in the analysis. 

 

The probability density function, or PDF, of a distribution completely specifies 

the probability distribution of a continuous random variable.  The PDF is denoted as f(t). 

The area under the PDF curve is always equal to one.  The cumulative density function, 

F(t), is the total area under the PDF curve up to the point in time, t.  Thus, we can 

represent the CDF in Equation A.1. 

(A.1) ( ) ( )
0

t

F t f s ds= ∫  

The CDF therefore represents the probability of failure in the interval [0,t]. 

The reliability function is simply the probability of a non-failure over the interval 

[0,t].  We know that the CDF is the probability of failure over the same interval, and we 

now call this the unreliability function.  Equation A.2 shows the reliability function.  

(A.2) ( ) ( )1R t F t= −  

This is also known as the survival function. 

The final function relating to a given distribution that we wish to explore in life 

data analysis is the hazard rate, or more commonly referred to as the failure rate.  The 

failure rate is the probability of failure at time t in the next ∆t of time, given that the 

system has not failed before that time.  The failure rate equation is given in Equation A.3. 

(A.3) 
0

( ( , ))( ) lim
( )t

P T t t th t
t R t∆ →

∈ + ∆=
∆ ⋅

 

 

The relation of the failure rate to the PDF and CDF is shown in Equation A.4 

(Meeker and Escobar, p.28). 

 

(A.4) ( ) ( )
( )

f t
h t

R t
=
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APPENDIX B.  COMMON LIFETIME DISTRIBUTIONS 

 
This appendix gives a brief overview of a few common lifetime distributions. 

 

Weibull Distribution 

The Weibull distribution is a reliability distribution commonly used in life data 

analysis.  It tends to be a good model for times-to-failure of both electronic and 

mechanical equipment.  This distribution can have up to three parameters.  If the location 

parameter is assumed to be zero, then the two-parameter Weibull distribution results. 

 Different behaviors can be modeled by the Weibull distribution, depending on the 

values of these parameters.  The shape parameter, denoted as β, can affect the 

characteristics of the shape of the PDF curve, reliability, and failure rate.  The shape 

parameter is also called the slope parameter, since it gives the slope of the CDF when 

plotted on probability paper.  Changing the values of β can have distinctively different 

effects on the distribution properties.  The property that we shall explore in detail is the 

hazard function. 

 It can be shown that when 0 < β < 1, the failure rate is a monotonic, decreasing 

function.  When β = 1, the failure rate is constant for all values of t.  This is because when 

β = 1, the Weibull distribution reduces to the memory-less distribution, the exponential 

distribution.  When β > 1, we can show that the failure rate is a monotonic, increasing 

function (Devore, p.179-180).  Equations B.1-B.4 show the reliability function, CDF, 

PDF, and hazard function explicitly for the Weibull distribution. 

(B.1) ( )
t

R t e

β

η
 − 
 =  

(B.2) ( ) 1
t

F t e

β

η
 − 
 = −  

(B.3) 
1

( )
ttf t e

ββ
ηβ

η η

−  − 
  

=  
 

 

(B.4) 
1

( ) th t
β

β
η η

−
 

=  
 
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Exponential Distribution 

The exponential distribution has a location parameter and may have a translation 

parameter.  It is usually considered to be the easiest distribution to work with.  Because it 

is so easy to manipulate, it is often misused.  It is used to represent systems that are 

assumed to have a constant failure rate, as seen in the special case of the Weibull 

distribution with β = 1.  The failure rate for the exponential distribution is λ, which is a 

constant.  The two-parameter exponential distribution has scale parameter, 1/λ, or η, and 

location parameter, γ.  The effect of γ is that the distribution is simply shifted along the x-

axis.  For positive values of γ, this implies that failures cannot occur before time t = γ 

(Devore, p.174-175).  The CDF, PDF, reliability function, and hazard function can all be 

obtained from those of the Weibull distribution with β = 1. 

 

Normal Distribution 

The normal distribution is the most used distribution and is occasionally used for 

reliability analysis and times-to-failure of electronic and mechanical systems.  There are 

two parameters in the normal distribution that need to be estimated, namely, the mean, µ, 

of the normal times to failure and the standard deviation, σ, of the times to failure.  It 

should be noted that to use the normal distribution with life data, we must be careful to 

only consider it when the mean is relatively high and the standard deviation small in 

comparison.  This is due to the PDF of the normal distribution extending to negative 

infinity, leading to negative times-to-failure, which usually does not make much sense.  

Since the normal distribution has much utility in the modeling of life data, we can justify 

this with a high mean compared to the standard deviation.  The hazard function of the 

normal distribution is a monotonically increasing function (Devore, p.158-162).  

Equations B.5-B.7 give the CDF, PDF and hazard function for the normal distribution. 

(B.5) ( ) ( )
t

F t f s ds
−∞

= ∫  
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(B.6) 
21

21( )
2

t

f t e
µ

σ

σ π

− −  
 =  

(B.7) ( )( )
1 ( )

f th t
F t

=
−

 

 

Lognormal Distribution 

The lognormal distribution can be often used to model reliability data, cycles-to-

failure in fatigue, loading variables in probabilistic design and material strengths.  This 

distribution is used when the natural logarithms of the times-to-failure are normally 

distributed.  Like the normal distribution, the lognormal distribution has two parameters; 

[ln( )]E tµ = , which is the location parameter, and [ln( )]Var tσ = , which is the scale 

parameter.  This distribution is similar to the normal distribution in many ways, although 

we must explore the hazard function a bit to see that it is increasing monotonically only 

for a while, where it then begins to monotonically decrease out towards infinity (Devore, 

p.181-182).  The CDF, PDF, and hazard function for the lognormal distribution are 

similar to those from the normal distribution and are shown in Equations B.8-B.10.  The 

CDF and PDF of the normal distribution are here denoted Fn(t) and fn(t). 

(B.8) ( ) ln( )nF t F t= ⋅  

(B.9) 1( ) ln( )nf t f t
σ

= ⋅  

(B.10) ( )( )
1 ( )

f th t
F t

=
−
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APPENDIX C.  PROBABILITY PLOTTING 

 
This appendix gives a more detailed explanation of probability plotting. 

 

 

 The essence of probability plotting is that if the plot is based on the correct 

distribution, then plotting sample points should result in a nearly-straight line (Devore, 

p.186).  Probability plotting tries to linearize the cumulative density function (CDF) of 

the distribution.  For the Weibull distributions, we use the logarithms of the times to 

failure as the inputs, or our x-values, and we must have some method to obtain our y-

values, or median ranks value.  This method is the median ranks method.  From complex 

calculations, the plots can then be drawn.  Refer to Statistical Methods for Reliability 

Data written by W. Meeker and L. Escobar for further detail. 
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APPENDIX D.   METHODS OF PARAMETER ESTIMATION 

 
This appendix gives the details of both RRX and MLE methods of parameter estimation. 

 

To fit a line to the data to estimate the parameters of the distribution, we could use 

a least squares method, known as rank regression on X (RRX), to perform our linear 

regression.  This method takes the sum of the squares of the horizontal difference 

between the actual value, x, and the x-value that lies on the regression line at point y.  The 

regression line that minimizes this sum is considered to fit best and therefore is the line 

that we shall choose.   

To develop the probability of failure on complete data, we simply rank the failure 

times in order of occurrence relative to each other.  Since all data points are known, this 

can be done.  But with censored data, we cannot always be certain which event will 

happen next.  If a data point was suspended at a time before another data point failed, 

there is ambiguity as to which data point was the first to fail.  We must modify our way 

of ranking the failures.  To do so, we use a weighting scheme.  We find out how many 

different scenarios can occur with the suspension occurring first, and then the same with 

the failure occurring first.  Then we calculate the mean order number (MON), which is 

represented in Equation D.1. 

(D.1) ( )ca db
MON

c d
+

=
+

 

 The variable a is the position of the failure if the suspension happened first, c is the 

number of different scenarios that can occur if the suspension occurs first, b is the 

position of the failure if the failure happens first, and d is the number of different 

scenarios that can occur from this position.  This mean order number is then the value 

assigned to the failure.  After doing this method to each failure, we have a mean order 

number for every failure entry.  We now can proceed as we would with complete data, 

generating our y-values and knowing our x-values exactly to come up with our 

probability plots to obtain the parameters of the chosen distribution (ReliaSoft, p.39, 53-

55). 



 52

 While RRX is a popular method of analysis of censored life data, there is a 

problem with it.  Since the mean order number is simply the position of the failed data 

points relative to other failures, there is no compensation for how spread-out the failures 

are from each other.  To rectify this, we explore the method of Maximum Likelihood 

Estimators, commonly referred to as MLE’s.  

 First, we shall explain the method of MLE’s for complete data in order to get a 

better grasp at how MLE’s will handle censored data better.  The underlying idea of 

MLE’s is to get the most likely value of the parameters of the chosen distribution that 

best describes the data.  Say we have a probability density function (PDF) that is as 

follows:  

(D.2) 1( ; ,..., )kf x θ θ , 

where x is a continuous random variable and there are k unknown parameters to be 

estimated.  The likelihood function seen in Equation D.3 is the product of each f(xi), 

where i is an element of the set of all x-values, or failure times in our case. 

(D.3) 1( ; ,..., )i ki
L f x θ θ= Π  

 

Taking the partial derivatives of the natural log of the likelihood function with respect to 

the parameters and setting these equal to zero allows us to solve the system of k equations 

simultaneously to obtain our estimated θ  values for the k parameters to be estimated. 

 Under regularity conditions, MLE’s converge to the correct values as the sample 

size increases, making MLE’s a very efficient and accurate method of parameter 

estimation for large sample sizes.  These regularity conditions, however, do not hold 

when using a threshold parameter (Meeker and Escobar, p.622).  By the Central Limit 

Theorem, the large sample size also allows us to assume the distribution of the estimates 

to be normal, allowing us to use the Fisher Matrix confidence bounds that will be 

explained later.  MLE’s also deal much better with right-censored data, and we now shall 

explore the method of using MLE’s with censored data (Devore, p.268). 

 The likelihood function for MLE analysis of data with censored data needs to 

account for not just the failures, but also the suspensions as well.  We use the same 
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technique described above, but we now add another term to the equation to account for 

each suspension.  Thus, we get a likelihood function as follows:  

(D.4) 1 1( , ,..., ) [1 ( ; ,..., )]i k j ki I j J
L f x F xθ θ θ θ

∈ ∈
= Π ⋅ Π − , 

where I is the set of complete data points (i.e. failure times) and J is the set of suspended 

data points (Meeker and Escobar, p.174-176).   

 RRX and MLE methods both assume that a distribution is already known, but life 

data does not usually tell the analyst what distribution it follows, if any, so the analyst 

must use a variety of factors in order to decide on a distribution and estimate its 

parameters.  Some of the aspects of distributions to consider include the probability 

density function, cumulative density function, reliability and unreliability functions, the 

mean life function, commonly referred to as the mean-time-to-failure (MTTF), and the 

hazard function, which is also known as the failure rate.   
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APPENDIX E.  FISHER MATRIX BOUNDS 

 
This appendix gives a few more details about Fisher Matrix Bounds. 

 

 

Using the log-likelihood function, Λ, obtained in the MLE method, we can 

construct the Hessian matrix of the function, given in Equation E.1 (ReliaSoft, p.68).   

(E.1) 

2 2

2
1 1 2

2 2

2
2 1 2

F
θ θ θ

θ θ θ

 ∂ Λ ∂ Λ
 ∂ ∂ ∂ =
 ∂ Λ ∂ Λ
 
∂ ∂ ∂  

 

 

Using the estimated values of the parameters, we can invert F to come up with the 

covariance matrix, where we can then get the variance of each of the parameters and the 

covariance between them, seen in Equation E.2.   

(E.2) 

12 2

2
1 1 21 1 2

2 2

1 2 2 2
2 1 2

ˆ ˆ ˆ( ) ( , )

ˆ ˆ ˆ( , ) ( )

Var Cov

Cov Var

θ θ θθ θ θ

θ θ θ
θ θ θ

−

∧ ∧

∧ ∧

 ∂ Λ ∂ Λ
   ∂ ∂ ∂   =
   ∂ Λ ∂ Λ    
∂ ∂ ∂  

  

We then can go back and use these values to obtain the variance of the function using the 

delta method.  Now that we have the expected value and the variance, we can go ahead 

and use the assumption of normality to construct our one-sided lower confidence bound 

(Devore, p.270-271).  
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APPENDIX F.   REGRESSION TREES 

 
This appendix gives a more detailed account of regression trees. 

 

 Regression trees are models that take input variables and use them to predict the 

response variable.  To use the x-values as a predictor, we need to define how to measure 

the accuracy of this predictor.  One way to do so is to take the average error,  

(F.1) 
1

1 | ( ) |
N

n n
n

y d x
N =

−∑ . 

yn is the response value for the n-th data entry, and d(xn) is the predicted yn value from the 

model.  This is known as least absolute deviation regression.  Of course, we also have the 

more traditional measure of accuracy in regression, which is the average squared error, 

(F.2) 2

1

1 ( ( ))
N

n n
n

y d x
N =

−∑ . 

This is commonly called least squares regression.  We shall use the method of least 

squares to define our measure of accuracy (Breiman, et al, p.222). 

 The model consists of a sequence of binary splits, where each split results in two 

more nodes in the model.  There are two types of nodes, terminal and intermediate.  

Intermediate nodes are nodes that branch further down, depending on certain criteria 

described later.  Terminal nodes are nodes where the predicted response variable has been 

determined, and this value is constant.  At each intermediate node, one of the input 

variables determines which branch of the tree to follow.  The predicted y-value, or output, 

of the model at a terminal node is simply the average of all the y-values of the data entries 

at that specific node.  Each intermediate node has a selected input variable associated 

with it and the split depends solely on the value of a single variable.  A cutoff level is 

determined for this input variable, and all data entries that have values less than the cutoff 

level are branched on one side of the tree, and the values greater than the cutoff level 

branch off along the other side, which creates two new nodes further down the tree.  The 

tree continues to branch at each intermediate node until all branches reach a terminal 

node. 



 58

 At each node we are really asking a question with a binary response.  The 

question is whether xi ≤  c, where c is defined as the cutoff value and xi corresponds to the 

i-th variable, which is where the node split is based.  If the answer to the question is yes, 

then we follow the branch to the left.  If the response is no, the branch to the right is 

followed.  

 There are three necessary elements needed when determining what the tree should 

look like in our model.  The first is a way to select the split at intermediate nodes.  Within 

each node, the error is calculated and the split that reduces the overall error the greatest is 

selected.  Therefore, the regression tree simply looks to maximize the decrease in the 

error by splitting nodes as necessary.  

The second element needed is a rule for determining when a node is terminal.  

Since the model is seeking to minimize the error, splitting at a node occurs when the error 

is significantly decreased.  Thus, if splitting a node does not result in a significant 

decrease in the error, then no split occurs and we say that the node is terminal.  There are 

other criteria used by S-Plus that we do not get into here. 

The last element is a rule to assign the y-values to each terminal node.  We have 

already stated that the y-value for each terminal node is the average of all the y-values for 

all data points at that specific node, which yields a constant value.  This value is the value 

that minimizes the within node squared error. 

The resulting tree of nodes forms the model that we use to make future 

predictions.  We take the input data and run it down the tree, following the branches that 

our data point satisfies.  When we reach a terminal node, we take the expected y-value for 

that node to be the predicted y-value for our data point (Breiman, et al, p.228-232). 
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APPENDIX G.   CLASSIFICATION TREES 

This appendix gives a more detailed account of classification trees. 

 

As it was with regression trees, the construction of classification trees is based on 

the same three principles.  Instead of an expected y-value, though, the output is the 

predicted class within the response variable to which the data point most likely belongs.  

The probability associated with each class is calculated and the class with the highest 

probability is selected.   

The process of selecting node splits is different only because we wish to minimize 

a different impurity function.  Terminal nodes are determined when the impurity does not 

decrease with a split in that node, just as we labeled nodes as terminal in regression trees 

when the error ceased to decrease. 

In a classification tree, we assume the responses to be multinomial.  A 

multinomial response is one where each observation has a probability associated with it 

of resulting in each of the outcomes.  These probabilities are denoted pi for the ith 

outcome.  Thus, for n trials, the probability of seeing ni outcomes of type i is proportional 

to in
ii

pΠ .    This is the likelihood function and taking the logarithm of this function gives 

us the log-likelihood, the quantity to be minimized in the classification tree.  Again, we 

go through the tree and ask a question at each node.  If the variable associated with the 

node is ordered, then the question remains the same as with regression trees: is xi ≤  c?  If 

the node split is determined by a categorical variable, then the question to be asked is 

whether or not xi is an element of a determined subset of the responses to that variable.  

We follow the appropriate branch depending on the answer to the question at that node.  

When we reach a terminal node, we look at the assigned categorical response.  This is the 

predicted response for our data point (Breiman, et al, p. 27-36).    
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APPENDIX H.   DATA USED FOR LIFE DATA ANALYSIS 

 
Life Condition  Life Condition
1085 S  1795 S 
100 S  1500 S 
1890 F  1628 F 
1390 S  1145 S 
759 S  152 S 
1380 S  246 S 
971 S  61 S 
861 S  966 S 
1165 S  462 S 
997 S  437 S 
1079 S  887 S 
1152 S  1199 S 
977 S  159 S 
424 S  1022 S 
3428 S  763 S 
2087 S  555 S 
1297 S  646 F 
727 S  2238 S 
820 S  2294 S 
1388 F  897 F 
663 S  1153 S 
810 S  1427 S 
2892 S  80 S 
951 F  2153 S 
1167 F  767 S 
853 S  711 F 
546 S  911 S 
1203 F  736 S 
2181 F  85 S 
917 S  1042 S 
1070 S  2871 S 
799 S  719 S 
1231 S  750 F 
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APPENDIX I.   DATA COLLECTED FOR OIL FILTER ANALYSIS 

 

Bearing Stage V Mass G/CM2 Fe Mass G/CM2 Mo Mass G/CM2 Ag Mass G/CM2 
2.1 0.0004 0.3750 0.0071 0.2353 
1.3 0.0001 0.7365 0.0146 1.0639 
2.0 0.0052 0.1775 0.0383 0.1534 
0.5 0.0000 0.3938 0.0251 0.2644 
1.4 0.0000 0.1067 0.0031 0.1735 
4.2 0.0077 0.2655 0.0544 0.4189 
1.0 0.0044 0.2877 0.0348 0.2011 
4.5 0.0119 0.3192 0.0836 0.2866 
1.3 0.0004 0.0518 0.0052 0.0591 
2.0 0.0046 0.2858 0.0365 0.6711 
2.0 0.0019 0.0898 0.0164 0.1157 
4.7 0.0082 0.6378 0.0800 1.8727 
1.9 0.0016 0.1607 0.0178 0.2364 
2.0 0.0022 0.0937 0.0230 0.1186 
1.0 0.0036 0.1865 0.0235 0.3373 
1.1 0.0008 0.0702 0.0097 0.2874 
1.6 0.0000 0.0540 0.0032 0.0337 
4.0 0.0068 0.2401 0.0592 0.1096 
1.4 0.0012 0.1437 0.0146 0.1866 
3.0 0.0057 0.4156 0.0439 0.6974 
4.3 0.0076 0.2780 0.0573 0.2288 
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